This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: (Jarník 1926; cf. Bombieri & Pila 1989) Let \(\mathcal{C}\) be a simple closed curve in the plane, of arc length \(L\). Show that the number of 'lattice points' \((m,n)\), \(m,n\in\mathbb{Z}\), lying on \(\mathcal{C}\) is at most \(L+1\). Show that if \(\mathcal{C}\) is strictly convex then the number of lattice points on \(\mathcal{C}\) is \(\ll 1 + L^{2/3}\), and that this estimate is best possible.
Solution: Please refer to this document.
There is no comment yet!
Problem: (cf. Hartman & Wintner 1947) Suppose that \(\sum |f(n)|d(n) \lt \infty\), and that \(\sum |F(n)|d(n) \lt \infty\). Show that \[F(n) = \underset{n|m}{\sum_{m}} f(m)\] for all \(n\) if and only if \[f(n) = \underset{n|m}{\sum_{m}} \mu (m/n) F(m)\]
Solution: (\( \Rightarrow\)) \begin{align*} \underset{n|m}{\sum_{m}} \mu (m/n) F(m) &= \mu (1) F(n) + \mu(2) F(2n) + \cdots \\ &= \mu(1) (f(n)+ f(2n) + \cdots) + \mu(2) (f(2n) + f(4n)+ \cdots) + \cdots \\ &= \sum_{k} \left( \sum_{d|k} \mu(d) \right) f(kn) = f(n) \end{align*} (\(\Leftarrow\)) \begin{align*} \underset{n|m}{\sum_{m}} f(m) & = f(n) + f(2n) + \cdots \\ &= \underset{n|m}{\sum_{m}} \mu (m/n) F(m) + \underset{2n|m}{\sum_{m}} \mu (m/2n) F(m) + \cdots \\ &= (\mu (1) F(n) + \mu(2) F(2n) + \cdots) + (\mu (1) F(2n) + \mu(2) F(4n) + \cdots) + \cdots \\ &= \mu(1) (F(n)+ F(2n) + \cdots) + \mu(2) (F(2n) + F(4n)+ \cdots) + \cdots \\ &= \sum_{k} \left( \sum_{d|k} \mu(d) \right) F(kn) = F(n) \end{align*}
There is no comment yet!
Problem: (cf. Hille 1937) Suppose that \(f(x)\) and \(F(x)\) are complex-valued functions defined on \([1, \infty)\). Show that \[F(x) = \sum_{n \le x} f(x/n)\] for all \(x\) if and only if \[f(x) = \sum_{n \le x} \mu (n) F(x/n)\] for all \(x\).
Solution: (\(\Rightarrow\)) \begin{align*} \sum_{n \le x } \mu (n) F(x/n) &= \sum_{mn \le x} \mu (n) f(x/mn)\\ &= \sum_{k \le x} \left( {\sum_{d|k}}\mu (d) \right) f(x/k) = f(x) \end{align*} (\(\Leftarrow\)) \begin{align*} \sum_{n \le x } f(x/n) &= \sum_{nm \le x } \mu (m) F(x/mn) \\& = \sum_{k \le x} \left( {\sum_{d|k}}\mu (d) \right) F(x/k)=F(x) \end{align*}
There is no comment yet!
Problem: (cf. Evelyn & Linfoot 1930) Let \(N\) be a positive integer, and suppose that \(P\) is square-free.
(a) Show that the number of residue classes \(n \pmod{P^2}\) for which \((n,\ P^2)\) is square-free and \((N-n,\ P^2)\) is square-free is \[P^2 \underset{p^2 | N}{\prod_{p|P}} \left(1- \frac{1}{p^2} \right)\underset{p^2 \nmid N}{\prod_{p|P}} \left(1- \frac{2}{p^2} \right).\]
(b) Show that the number of integers \(n\), \(0 \lt n \lt N\), for which \((n,\ P^2)\) is square-free and \((N-n,\ P^2)\) is square-free is \[N \underset{p^2 | N}{\prod_{p|P}} \left(1- \frac{1}{p^2} \right)\underset{p^2 \nmid N}{\prod_{p|P}} \left(1- \frac{2}{p^2} \right) + O(P^2).\]
(c) Show that the number of \(n\), \(0 \lt n \lt N\), such that \(n\) is divisible by the square of a prime \(\gt y\) is \(\ll N/y\).
(d) Take \(P\) to be the product of all primes not exceeding \(y\). By letting \(y\) tend to infinity slowly, show that the number of ways of writing \(N\) as a sum of two square-free integers is \(\sim c(N)N\) where \[c(N) = a \prod_{p^2 | N}\left( 1+ \frac{1}{p^2-2} \right),\quad a = \prod_{p} \left(1-\frac{2}{p^2} \right).\]
Solution:
(a) (i) \((N-n,\ P^2)\) is not square-free, i.e., there exists a prime \(p |P\) such that \(p^2|(N-n)\).
If \(p^2 | n\), then \(p^2 | N\). Hence, \[P^2 \underset{p^2 | N}{\prod_{p|P}}\left(1- \frac{1}{p^2} \right).\]
If \(p^2 \nmid n\), then \(p^2 \nmid N\). Put \(N-n = p^2 M\) for some \((p^2,\ M) = 1\), then \[n = N - p^2 M \pmod{P^2}.\] Hence, \[P^2 \underset{p^2 \nmid N}{\prod_{p|P}}\left(1- \frac{1}{p^2} \right).\]
(ii) \((N-n,\ P^2)\) is square-free and \((n,\ P^2\) is not square-free, i.e., there exists a prime \(p | P\) such that \(p^2 | n\) and \(p^2 \nmid N\). Hence, \[P^2 \underset{p^2 \nmid N}{\prod_{p|P}}\left(1- \frac{1}{p^2} \right).\]
By (i) and (ii), \[P^2 \underset{p^2 | N}{\prod_{p|P}} \left(1- \frac{1}{p^2} \right)\underset{p^2 \nmid N}{\prod_{p|P}} \left(1- \frac{2}{p^2} \right).\]
(b) Let \(f\) be \[f(k) = \# \{ 0 \lt i \lt k:\ (i,\ P^2)\text{ and }(N-i,\ P^2)\text{ is square-free.} \} \] Put \(N = AP^2 + B\) where \(0 \le B \lt P^2\), then \[f(N) = f(AP^2 + B) = Af(P^2) + f(B)\] \[=(AP^2 + B) \frac{f(P^2)}{P^2} + f(B) - \frac{B}{P^2}f(P^2).\] \[\left| f(B) - \frac{B}{P^2}f(P^2) \right| \le P^2 + P^2 = 2P^2 = O(P^2)\] Therefore, \[N \underset{p^2 | N}{\prod_{p|P}} \left(1- \frac{1}{p^2} \right)\underset{p^2 \nmid N}{\prod_{p|P}} \left(1- \frac{2}{p^2} \right) + O(P^2).\]
(c) \[\#\{0\lt n \lt N : n\text{ is divisible by the square of a prime }\gt y \} \le \sum_{y \lt p \lt N}\left[\frac{N}{p^2} \right] \] \[\le N \sum_{y \lt p \lt N}\frac{1}{p^2}\ll N/y\]
(d) \[\# = N \underset{p^2 | N}{\prod_{p|P}} \left(1- \frac{1}{p^2} \right)\underset{p^2 \nmid N}{\prod_{p|P}} \left(1- \frac{2}{p^2} \right) + O(P^2) + O(N/y)\] Let \(y\) be \(\log N\), then \(O(P^2) = O(\log^4 N )\) and \(O(N/y) = O(N/\log N)\). Hence, \[\# / c(N) N \sim \prod_{p^2|N}\left(1- \frac{1}{p^2} \right)\prod_{p^2\nmid N}\left(1- \frac{2}{p^2} \right) /c(N)=1\]
There is no comment yet!
Problem: (Linfoot & Evelyn 1929) Let \(\mathcal{Q}_k\) denote the set of positive \(k^{\text{th}}\) power free integers (i.e., \(q \in \mathcal{Q}_k\) if and only if \(m^{k} | q \Rightarrow m=1\)).
(a) Show that \[\sum_{n \in \mathcal{Q}_k} n^{-s} = \frac{\zeta(s)}{\zeta(ks)}\] for \(\sigma \gt 1\).
(b) Show that for any fixed integer \(k \gt 1\) \[\underset{n \in \mathcal{Q}_k}{\sum_{n\le x}}1 =\frac{x}{\zeta(k)}+ O\left(x^{1/k} \right)\] for \(x \ge 1\).
Solution:
(a) Let a function \(f\) be \(f(n) = 1\) if \(n \in \mathcal{Q} _k\), and \(f(n) = 0\) otherwise. Then, \(f\) is multiplicative. Hence \[\sum_{n \in \mathcal{Q}_k} n^{-s} = \sum_{n=1}^{\infty}f(n) n^{-s}\] \[=\prod_{p} (1 + f(p)p^{-s} + f(p^2)p^{-2s} + f(p^3)p^{-3s}+\cdots)\] \[=\prod_{p} (1 + p^{-s} + \cdots + p^{-(k-1)s}) = \prod_{p} \frac{1-p^{-ks}}{1-p^{-s}} = \frac{\zeta(s)}{\zeta(ks)}\] for \(\sigma \gt 1\).
(b) By (a), \[f(n) = \sum_{d^{k}|n} \mu(d).\] Hence, \[\underset{n \in \mathcal{Q}_k}{\sum_{n\le x}}1 = \sum_{n \le x} f(n) = x \sum_{d^{k} \le x} \frac{\mu(d)}{d^{k}} + O\left(\sum_{d^k \le x}1\right)\] \[=\frac{x}{\zeta(k)}+ O\left(x^{1/k} \right)\] for \(x \ge 1\).
There is no comment yet!