This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: Let \(R(x)\) be as in Exercise 24(c). Show that \(R(x)\ll x^{1/3}\log x\).
Solution: Put \(f(t) = \sqrt{x-t^{2}}\), then \(x^{-1/2} \le -f''(t) \le 2\sqrt{2}x^{-1/2}\) for \(0\le t \le \sqrt{x/2}\). By Exercise 25, \[\sum_{0 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\}) \ll x^{1/3}\log x.\] Hence, \[R(x) = -8\sum_{1 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\})+O(1) \ll x^{1/3}\log x.\]
Dongwan
Awesome
doyeobi99
Thanks! :)
CharlesPiown
AN $80000 TRANSFER FOR AN IMPRESSIVE THANKSGIVING https://green.7112182096.workers.dev/redirect?url=https%3A%2F%2F90032623.blogspot.com%3F3254
BypeBreve
Photos for my escort application are uploaded. Let me know if the quality is good. Preview: https://tinyurl.com/4a77ax99
Problem: Show that if \(U \le \sqrt{x}\), then \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll x^{1/3}\log x.\] Let \(\Delta(x)\) be as in Exercise 23(b). Show that \(\Delta(x)\ll x^{1/3}(\log x)^2\).
Solution: Put \(f(t) = x/t\), then \(1/(2U/(2x^{1/3}))^{3}\le f''(t)\le 8/(2U/(2x^{1/3}))^{3}\) for \(U \lt t \le 2U\). By Exercise 25, \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll U (2U/(2x^{1/3}))^{-1} \log 2(2U/(2x^{1/3})) + (2U/(2x^{1/3}))^2\ll x^{1/3}\log x.\] By applying this \(O(\log x)\) times, \begin{align*} \Delta (x) = -2 \sum_{n \le \sqrt{x}}B_1 (\{x/n\}) + O(1)\ll x^{1/3}(\log x)^2. \end{align*}
There is no comment yet!
Problem: (a) Show that if \((a,q)=1\), and \(\beta\) is real, then \[ \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = B_1(\{ q\beta \}). \] (b) Show that if \(A \geq 1\), \(\; |f'(x) - a/q| \leq A/q^2\) for \(1 \leq x \leq q\), and \((a,q)=1\), then \[ \sum_{n=1}^{q} B_1(\{ f(n) \}) \;\ll\; A. \] (c) Suppose that \(Q \geq 1\) is an integer, \(B \geq 1\), and that \({1}/{Q^3} \leq \pm f''(x) \leq {B}/{Q^3}\) for \(0 \leq x \leq N\) where the choice of sign is independent of \(x\). Show that numbers \(a_r, q_r, N_r\) can be determined, \(0 \leq r \leq R\) for some \(R\), so that (i) \((a_r, q_r) = 1\), (ii) \(q_r \leq Q\), (iii) \(\lvert f'(N_r) - a_r/q_r \rvert \leq 1/(q_r Q)\), (iv) \(N_0 = 0\), \(N_r = N_{r-1} + q_{r-1}\) for \(1 \leq r \leq R\), and \(N - Q \leq N_R \leq N\).
(d) Show that under the above hypotheses \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B(R+1) + Q. \] (e) Show that the number of \(s\) for which \(a_s/q_s = a_r/q_r\) is \(\ll Q^2/q^2\). Let \(1 \leq q \leq Q\). Show that the number of \(r\) for which \(q_r = q\) is \[ \ll \; (Q/q)^2 \left( BNq / Q^3 + 1 \right). \] (f) Conclude that under the hypotheses of (c), \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B^2 N Q^{-1} \log 2Q + B Q^2. \]
Solution: (a) \[\exp\left(2\pi i \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \right) = \exp(2\pi i B_1(\{ q\beta \})).\] Since \[\sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{n}{q} + \beta \right\} \right),\] \[-\frac{1}{2}\le \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \le \frac{1}{2}.\]
(b) \begin{align*} \sum_{n=1}^{q} B_1(\{ f(n) \}) &= \sum_{n=1}^{q} \left( \{ f(n) \} - \left\{ \frac{a}{q}n + f(1) \right\} \right) + \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + f(1)\right\} \right)\ll A. \end{align*}
(c) By Dirichlet's approximation theorem, it's done.
(d) With (b), it's done.
There is no comment yet!
Problem: Let \(r(n)\) be the number of ordered pairs \((a,b)\) of integers for which \(a^2+b^2=n\).
(a) Show that \[ \sum_{n \le x} r(n) = 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \] (b) Show that \[ \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} = \left( \frac{\pi}{8} + \frac{1}{2} \right) x - B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \] (c) Write \(\sum_{0 \le n \le x} r(n) = \pi x + R(x)\). Show that \[ R(x) = -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \]
Solution: (a) \begin{align*} \sum_{n \le x} r(n) &= \#\{(a,b)\in \mathbb{Z}^2: a^2+b^2 \le x\}\\ &= \#\{(0,0)\} +4\times \#\left\{(a,0):a\le\sqrt{x}\right\}\\ &\qquad\qquad+ 8\times \#\left\{(a,b): a^2+b^2 \le x,\ a\le b\right\} \\ &\qquad\qquad\qquad- 4\times \#\left\{(a,b): a,b\le \sqrt{x/2}\right\}\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \end{align*}
(b) \begin{align*} \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d[u] \\ &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d\left(u-B_1(\{u\}) \right)\\ &= \left( \frac{\pi}{8} + \frac{1}{2} \right) x - \left(\left. \sqrt{x-u^2}B_1(\{u\})\right|_{0}^{\sqrt{x/2}} + \int_{0+}^{\sqrt{x/2}}\frac{u}{\sqrt{x - u^2}}B_1(\{u\})du\right)\\ &=\left( \frac{\pi}{8} + \frac{1}{2} \right) x - \sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \end{align*}
(c) \begin{align*} \sum_{n \le x} r(n) &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right]- 4 \left[ \sqrt{x/2} \right]^2\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left( \sqrt{x - n^2}- 1/2 -B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) \right) - 4 \left[ \sqrt{x/2} \right]^2\\ &= 4\left[ \sqrt{x} \right] - 4 \left[ \sqrt{x/2} \right]^2 + {\pi}x + 4 x - 8\sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right)\\ &\qquad\qquad- 4\sqrt{x} -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right)-4\left[\sqrt{x/2}\right] + O(1)\\ &=\pi x -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \end{align*}
There is no comment yet!
Problem:Let \(B_1(x) = x - 1/2\), as in Appendix B.
(a) Show that \[ \sum_{n \le x} \frac{1}{n} = \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \] (b) Write \(\sum_{n \le x} d(n) = x \log x + (2C_0 - 1)x + \Delta(x)\). Show that \[ \Delta(x) = -2 \sum_{n \le \sqrt{x}} B_1(\{x/n\}) + O(1). \] (c) Show that \(\int_0^X \Delta(x)\, dx \ll X\).
(d) Deduce that \begin{align*} \sum_{n \le X} d(n)(X-n) &= \int_0^X \left( \sum_{n \le x} d(n) \right)dx \\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}
Solution: (a) \begin{align*} \sum_{n \le x} \frac{1}{n} &= \int_{1-}^{x} \frac{1}{u} d[u] = \int_{1-}^{x} \frac{1}{u} du - \int_{1-}^{x} \frac{1}{u} d\{u\} \\ &=\log x - \int_{1-}^{x} \frac{1}{u} d\left(\{u\}- 1/2 \right)=\log x - \int_{1-}^{x} \frac{1}{u} dB_{1}(\{u\})\\ &=\log x - \frac{1}{u} B_{1}(\{u\})\Bigg|_{1}^{x} - \int_{1-}^{x} \frac{1}{u^2} B_{1}(\{u\}) du\\ &= \log x - {B_1(\{x\})}/{x} + \frac{1}{2} - \int_{1}^{x} \frac{1}{u^2}\left(\{u\}- 1/2 \right) du\\\ &= \log x - {B_1(\{x\})}/{x} + 1 - \int_{1}^{\infty} \frac{\{u\}}{u^2} du + \int_{x}^{\infty}\frac{1}{u^2}\left(\{u\}- 1/2 \right) du \\ &= \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \end{align*}
(b) Note that \begin{align*} \sum_{n \le \sqrt{x}}[x/n] &= \sum_{n \le \sqrt{x}}\left(x/n- 1/2 - B_1(\{x/n\}) \right) \\ &= x\left(\frac{1}{2}\log x + C_0 - {B_1(\{\sqrt{x}\})}/{\sqrt{x}} + O(1/x) \right) - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})\\ &= \frac{1}{2}x\log x+ C_0 x - \sqrt{x} \{\sqrt{x}\} + \sqrt{x}/2 - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1) . \end{align*} Hence, \begin{align*} \sum_{n \le x} d(n) &= 2 \sum_{n \le \sqrt{x}}[x/n] - [\sqrt{x}]^2 \\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \sqrt{x} - [\sqrt{x}]- [\sqrt{x}]^2 -2\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1)\\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \{\sqrt{x}\}- x + 2\sqrt{x}\{\sqrt{x}\} + \{\sqrt{x}\}^2 + \Delta (x)\\ &=x \log x + (2C_0 - 1)x + \Delta(x). \end{align*}
(c) Note that \[\left|\int_{a}^{b} B_{1}\left( \{x\} \right)dx \right| \le 1/4\] for every \(a,b\). Hence, \begin{align*} \left| \int_{0}^{X} \sum_{n \le \sqrt{x}} B_{1} (\{x/n\}) dx\right| &= \left|\sum_{0 \le k \le \sqrt{X}-1} \int_{k^2}^{(k+1)^2} \sum_{n \le k} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \sum_{n \le k}\left| \int_{k^2}^{(k+1)^2} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \frac{1}{4}k \ll X. \end{align*}
(d) \begin{align*} \int_0^X \left( \sum_{n \le x} d(n) \right)dx &= \int_0^X ( x \log x + (2C_0 - 1)x + \Delta(x)) dx\\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}
There is no comment yet!