Welcome to Doyeob Lee's Blog!

This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.

If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!

Recent Posts

MNT - Montgomery Exercise 2.3.5

Problem: (Davenport 1932) Let \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d}.\]

(a) By recalling Exercise 2.1.16(a), or otherwise, show that \(f(n) \ge 0\) for all \(n\).

(b) Show that \(f(n) \ll \log\log n\) for \(n \ge 3\).

(c) Show that \(f(n) \sim \frac{1}{4}\log\log n\) if \(n = \prod_{y \lt p \le y^2}p\).

(d) Show that \(f(n) \le\left( \frac{1}{4} + o(1)\right)\log\log n\) as \(n\to \infty\).

Solution: (a) By Exercise 2.1.16(a), \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d} = \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1} \ge 0.\]

(b) Note that \begin{align*} f(n) \le \sum_{p \mid n} \frac{\log p}{p - 1}. \end{align*} Since \({\log x}/{(x - 1)}\) is decreasing function for all \(x\gt 0\), it is enough to show only when \(n = \prod_{p \le y}p\). Now, \begin{align*} \sum_{p \mid n} \frac{\log p}{p - 1} &= \sum_{p \le y} \frac{\log p}{p-1}\\ &\ll \log y = \log \log n. \end{align*}

(c) \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{1}{2} + o(1)\right) \left(\log y + O(1) \right)\\ &= \left(\frac{1}{4} + o(1)\right)\log\log n \end{align*}

(d) Suppose \(n = \prod_{y^{a} \lt p \le y^2}p\), then \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y^{a} \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y^{a} \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{\log y^{a}}{2\log y} + o(1)\right) \left(\log y^2 - \log y^{a} + O(1) \right)\\ &= \left(\frac{a}{2} + o(1)\right) \left((2-a)\log y+ O(1) \right)\\ &= \left(\frac{a(2-a)}{4} + o(1)\right)\log\log n\le\left( \frac{1}{4} + o(1)\right)\log\log n. \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.3.4

Problem: Let \(d_k (n)\) be as in Exercise 2.1.18. Show that if \(k\) and \(\kappa\) are fixed, then \[\sum_{n\le x} d_k (n) ^{\kappa} \ll x (\log x) ^{k ^{\kappa}-1}.\] for \(x \ge 2\).

Solution: Since \[\sum_{p \le x}d_{k}(p)^{\kappa}\log p \ll x, \qquad \sum_{\substack{p^{m}\\m\ge 2}}\frac{d_{k}(p^{m})^{\kappa}m\log p}{p^{m}} \ll 1,\] by Corollary 2.15, \begin{align*} \sum_{n\le x} d_k (n) ^{\kappa} &\ll \frac{x}{\log x} \prod_{p \le x} \left(1 + \frac{d_k (p) ^{\kappa}}{p}+\frac{d_k (p^2) ^{\kappa}}{p^2}+\cdots \right)\\ &\ll x (\log x) ^{k ^{\kappa}-1}. \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.3.3

Problem: Let \(f(n) = \prod_{p|n}(1+p^{-1/2})\).

(a) Show that there is a constant \(a\) such that if \(n\ge 3\), then \[f(n) \lt \exp (a(\log n)^{1/2}(\log \log n)^{-1}). \]

(b) Show that \(\sum_{n\le x}f(n) = cx + O(x^{1/2})\) where \(c = \prod_{p}(1+p^{-3/2})\).

Solution: (a) It is enough to show only when \(n = \prod_{p\le y} p\). Note that \(\log \log n = \log y + O(1)\) and \[\sum_{p\le y}p^{-1/2} = \int_{2-}^{y} u^{-1/2} d\pi(u) \ll y^{1/2}(\log y)^{-1}.\] Now, \begin{align*} \log f(n) &= \sum_{p\le y}\log(1+p^{-1/2})\\ &=\sum_{p\le y}p^{-1/2} + O \left(\sum_{p\le y}p^{-1}\right)\\ &\ll y^{1/2}(\log y)^{-1} = (\log n)^{1/2} (\log \log n)^{-1}. \end{align*}

(b) Note that \[f(n) = \sum_{d|n} \mu(d)^2 d^{-1/2}.\] Hence, \begin{align*} \sum_{n\le x}f(n) &= \sum_{n\le x}\sum_{d|n} \mu(d)^2 d^{-1/2}\\ &=x\sum_{d\le x}\mu(d)^2 d^{-3/2} + O\left(\sum_{d\le x} \mu(d)^2 d^{-1/2}\right)\\ &= x\sum_{d=1}^{\infty}\mu(d)^2 d^{-3/2} + \sum_{d \gt x}\mu(d)^2 d^{-3/2} + O(x^{1/2})\\ &= cx + O(x^{1/2}). \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.3.2

Problem: Show that \(d(n) \le \sqrt{3n}\) with equality if and only if \(n=12\).

Solution: Follow the steps in proving (2.20). With \(n = \prod_p p^{a_p}\), \[\frac{d(n)}{n^{1/2}} = \prod_{p}\frac{a_p + 1}{p^{a_p / 2}},\] which be maximized by \(a_p = [(p^{1/2}-1)^{-1}].\) Since \(a_2 = 2\), \(a_3 = 1\), and \(a_p = 0\) for \(p \ge 5\), \(d(n) \le \sqrt{3n}\), where equality holds when \(n = \prod_p p^{a_p} = 12\).

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.3.1

Problem: Let \(\sigma(n) = \sum_{d|n}d\).

(a) Show that \(\sigma(n) \varphi(n) \le n^2\) for all \(n \ge 1\).

(b) Deduce that \(n+1 \le \sigma(n) \le e^{C_0}n\big(\log \log n + O(1)\big)\) for all \(n\ge 3\).

Solution: (a) Note that \[\sigma(p^a) \varphi(p^a) = p^{2a} - p^{a-1} \le p^{2a} .\] Hence, for \(n = p_{1}^{\alpha_1} p_{2}^{\alpha_2} \cdots p_{k}^{\alpha_k}\), \[\sigma(n) \varphi(n) = \sigma({p_{1}^{\alpha_1}})\varphi(p_{1}^{\alpha_1}) \cdots \sigma({p_{k}^{\alpha_k}})\varphi(p_{k}^{\alpha_k}) \le p_{1}^{2\alpha_1} \cdots p_{k}^{2\alpha_k} = n^2.\]

(b) By Theorem 2.9, we're done.

Comments

There is no comment yet!

Name

Comment