This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: Let \(r(n)\) be the number of ordered pairs \((a,b)\) of integers for which \(a^2+b^2=n\).
(a) Show that \[ \sum_{n \le x} r(n) = 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x}/2} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \] (b) Show that \[ \sum_{1 \le n \le \sqrt{x}/2} \sqrt{x - n^2} = \left( \frac{\pi}{8} + \frac{1}{2} \right) x - B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \] (c) Write \(\sum_{0 \le n \le x} r(n) = \pi x + R(x)\). Show that \[ R(x) = -8 \sum_{1 \le n \le \sqrt{x}/2} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \]
Solution: (a) \begin{align*} \sum_{n \le x} r(n) \end{align*}
There is no comment yet!
Problem:Let \(B_1(x) = x - 1/2\), as in Appendix B.
(a) Show that \[ \sum_{n \le x} \frac{1}{n} = \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \] (b) Write \(\sum_{n \le x} d(n) = x \log x + (2C_0 - 1)x + \Delta(x)\). Show that \[ \Delta(x) = -2 \sum_{n \le \sqrt{x}} B_1(\{x/n\}) + O(1). \] (c) Show that \(\int_0^X \Delta(x)\, dx \ll X\).
(d) Deduce that \begin{align*} \sum_{n \le X} d(n)(X-n) &= \int_0^X \left( \sum_{n \le x} d(n) \right)dx \\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}
Solution: (a) \begin{align*} \sum_{n \le x} \frac{1}{n} &= \int_{1-}^{x} \frac{1}{u} d[u] = \int_{1-}^{x} \frac{1}{u} du - \int_{1-}^{x} \frac{1}{u} d\{u\} \\ &=\log x - \int_{1-}^{x} \frac{1}{u} d\left(\{u\}- 1/2 \right)=\log x - \int_{1-}^{x} \frac{1}{u} dB_{1}(\{u\})\\ &=\log x - \frac{1}{u} B_{1}(\{u\})\Bigg|_{1}^{x} - \int_{1-}^{x} \frac{1}{u^2} B_{1}(\{u\}) du\\ &= \log x - {B_1(\{x\})}/{x} + \frac{1}{2} - \int_{1}^{x} \frac{1}{u^2}\left(\{u\}- 1/2 \right) du\\\ &= \log x - {B_1(\{x\})}/{x} + 1 - \int_{1}^{\infty} \frac{\{u\}}{u^2} du + \int_{x}^{\infty}\frac{1}{u^2}\left(\{u\}- 1/2 \right) du \\ &= \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \end{align*}
(b) Note that \begin{align*} \sum_{n \le \sqrt{x}}[x/n] &= \sum_{n \le \sqrt{x}}\left(x/n- 1/2 - B_1(\{x/n\}) \right) \\ &= x\left(\frac{1}{2}\log x + C_0 - {B_1(\{\sqrt{x}\})}/{\sqrt{x}} + O(1/x) \right) - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})\\ &= \frac{1}{2}x\log x+ C_0 x - \sqrt{x} \{\sqrt{x}\} + \sqrt{x}/2 - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1) . \end{align*} Hence, \begin{align*} \sum_{n \le x} d(n) &= 2 \sum_{n \le \sqrt{x}}[x/n] - [\sqrt{x}]^2 \\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \sqrt{x} - [\sqrt{x}]- [\sqrt{x}]^2 -2\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1)\\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \{\sqrt{x}\}- x + 2\sqrt{x}\{\sqrt{x}\} + \{\sqrt{x}\}^2 + \Delta (x)\\ &=x \log x + (2C_0 - 1)x + \Delta(x). \end{align*}
(c) Note that \[\left|\int_{a}^{b} B_{1}\left( \{x\} \right)dx \right| \le 1/4\] for every \(a,b\). Hence, \begin{align*} \left| \int_{0}^{X} \sum_{n \le \sqrt{x}} B_{1} (\{x/n\}) dx\right| &= \left|\sum_{0 \le k \le \sqrt{X}-1} \int_{k^2}^{(k+1)^2} \sum_{n \le k} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \sum_{n \le k}\left| \int_{k^2}^{(k+1)^2} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \frac{1}{4}k \ll X. \end{align*}
(d) \begin{align*} \int_0^X \left( \sum_{n \le x} d(n) \right)dx &= \int_0^X ( x \log x + (2C_0 - 1)x + \Delta(x)) dx\\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}
There is no comment yet!
Problem:(Feller & Tornier 1932) Let \(f(n)\) denote the multiplicative function such that \(f(p) = 1\) for all primes \(p\), and \(f(p^k) = -1\) whenever \(k > 1\).
(a) Show that \[ \sum_{n=1}^\infty \frac{f(n)}{n^s} = \zeta(s)\prod_p \left(1 - \frac{2}{p^{2s}}\right) \] for \(\sigma > 1\).
(b) Deduce that \[ f(n) = \sum_{d^2 \mid n} \mu(d) 2^{\omega(d)}. \]
(c) Explain why \(2^{\omega(n)} \leq d(n)\) for all \(n\).
(d) Show that \[ \sum_{n \leq x} f(n) = ax + O\!\left(x^{1/2}\log x\right) \] where \(a\) is the constant of Exercise 4.
(e) Let \(g(n)\) denote the number of primes \(p\) such that \(p^2 \mid n\). Show that the set of \(n\) for which \(g(n)\) is even has asymptotic density \((1+a)/2\).
(f) Put \[ e_k = \frac{1}{k} \sum_{d \mid k} \mu(d)\, 2^{k/d}. \] Show that if \(|z| \lt 1\), then \[ \log(1 - 2z) = \sum_{k=1}^\infty e_k \log(1 - z^k). \]
(g) Deduce that \[ a = \prod_{k=1}^\infty \zeta(2k)^{e_k}. \]
Solution: (a) \begin{align*} \sum_{n=1}^\infty \frac{f(n)}{n^s} &= \prod_{p} \left( 1 + f(p)p^{-s} + f(p^2)p^{-2s} + \cdots \right)\\ &= \prod_{p} \left( 1 + p^{-s} - \frac{p^{-2s}}{1-p^{-s}}\right) = \prod_{p} \left( \frac{1 -2 p^{-2s}}{1-p^{-s}}\right)\\ &=\zeta(s)\prod_p \left(1 - \frac{2}{p^{2s}}\right) \end{align*}
(b) Let \(h(d)\) be \(h(d) = \mu(\sqrt{d})2^{\omega(\sqrt{d})}\) if \(d\) is a perfect square, and \(h(d) = 0\) otherwise. Then, \[\sum_{n=1}^\infty \frac{h(n)}{n^s} = \prod_p \left(1 - \frac{2}{p^{2s}}\right).\] Hence, \[ f(n) =\sum_{d | n} h(d) = \sum_{d^2 \mid n} \mu(d) 2^{\omega(d)}. \]
(c) \[2^{\omega(p^{k})} = 2 \le k+1 = d(p^{k})\]
(d) \begin{align*} \sum_{n \leq x} f(n) &= \sum_{n \leq x}\sum_{d^2 \mid n} \mu(d) 2^{\omega(d)}\\ &=x\sum_{d^2 \le x}\frac{\mu(d) 2^{\omega(d)}}{d^2} + O\left( \sum_{d^2 \le x} 2^{\omega(d)}\right)\\ &=ax + O\left( \sum_{d^2 \le x} d(d)\right) =ax + O\!\left(x^{1/2}\log x\right) \end{align*}
(e) Note that \[f(n) = (-1)^{g(n)}.\] Hence, the asymptotic density of the set of \(n\) for which \(g(n)\) is even is equal to \[\frac{1}{x} \sum_{n \le x} \frac{1 + f(n)}{2} \to \frac{1+a}{2}\] as \(x \to \infty\).
(f) Note that \begin{align*} \sum_{k|n} k{e_k} = \sum_{k|n}\sum_{d \mid k} \mu(d)\, 2^{k/d} = 2^{n}. \end{align*} Hence, \begin{align*} \sum_{k=1}^\infty e_k \log(1 - z^k) &= - \sum_{k=1}^{\infty} e_k \sum_{n=1}^{\infty} \frac{1}{n}z^{nk} =- \sum_{n=1}^{\infty}\sum_{k=1}^{\infty} e_k \frac{1}{n}z^{nk}\\ &=- \sum_{n=1}^{\infty} \sum_{k|n} e_k \frac{n}{k} z^{n} =- \sum_{n=1}^{\infty} \frac{1}{n} (2z)^{n} = \log (1-2z). \end{align*}
(g) \begin{align*} \log a &= \sum_{p} \log(1-2/p^2) = \sum_{p}\sum_{k=1}^\infty e_k \log(1 - p^{-2k})\\ &=\sum_{k=1}^\infty e_k \sum_{p}\log(1 - p^{-2k}) =\sum_{k=1}^\infty e_k \log \zeta(2k) \end{align*}
There is no comment yet!
Problem: (a) Show that if \(a^2\) is the largest perfect square \(\le x\) then \(x-a^{2} \le 2 \sqrt{x}\).
(b) Let \(a^2\) be as above, and let \(b^2\) be the least perfect square such that \(a^2 +b^2 \gt x\). Show that \(a^2+b^2 \lt x + 6 x^{1/4}\). Thus for any \(x \ge 1\), there is a sum of two squares in the interval \((x, x + 6 x^{1/4})\).
Solution: (a) Since \(a \le \sqrt{x} \lt a+1\), \[x-a^2 \lt x- (\sqrt{x}-1)^2 = 2\sqrt{x}-1 \lt 2\sqrt{x} .\]
(b) Since \(a^2 + (b-1)^2 \le x \lt a^2 + b^2\), \[(b-1)^2 \le x-a^2 \le 2\sqrt{x} \Rightarrow b \le 1+ \sqrt{2}x^{1/4} .\] Hence, \[a^2 + b^2 \le x+ 2b-1 \le 1 +2\sqrt{2}x^{1/4} \le x+ 6x^{1/4} .\]
There is no comment yet!
Problem: (Wintner 1944, p. 46) Suppose that \(\sum_d |g(d)| / d \lt \infty\). Show that \(\sum_{d \le x} |g(d)| = o(x)\). Suppose also that \(\sum_{n \le x} f(n) = cx + o(x)\), and put \(h(n) = \sum_{d|n} f(d) g(n/d)\). Show that \[\sum_{n \le x} h(n) = cgx + o(x)\] where \(g = \sum_{d} g(d)/d\).
Solution: Let \(G(x) =\sum_{d \le x} |g(d)|\), then \begin{align*} x\sum_{m \le x} |g(m)|/m = x\int_{1-}^{x} \frac{dG(u)}{u}= x\frac{G(u)}{u} \Bigg|_{1-}^{x} + x\int_{1-}^{x} \frac{G(u)}{u^2}du = o(x). \end{align*} Hence, \begin{align*} \sum_{n \le x} h(n) &= \sum_{n \le x}\sum_{km = n} f(k) g(m)\\ &= \sum_{m \le x} g(m) \left(\sum_{k \le x/m} f(k) \right)\\ &= \sum_{m \le x} g(m) \left(c(x/m) + o(x/m)\right)\\ &= cx\sum_{m \le x} g(m)/m + o\left(x \sum_{m \le x} |g(m)|/m\right)\\ &= cgx + o(x). \end{align*}
There is no comment yet!