This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: (a) Let \(d_n = [1,2, \dots, n]\). Show that \(d_n = e^{\psi(n)}\).
(b) Let \( P \in \mathbb{Z}[x] \), \(\deg P \le n\). Put \(I = I(P) = \int_{0}^{1}P(x)dx\). Show that \(Id_{n+1}\in \mathbb{Z}\), and hence that \(d_{n+1} \ge 1/|I|\) if \(I \neq 0\).
(c) Show that there is a polynomial \(P\) as above so that \(Id_{n+1} = 1\).
(d) Verify that \(\max_{0\le x\le 1} | x^2 (1-x)^2 (2x-1)| = 5^{-5/2}\).
(e) For \(P(x) = \left(x^2(1-x)^2 (2x-1) \right)^{2n} \), verify that \(0 \lt I \lt 5^{-5n}\).
(f) Show that \(\psi (10n+1) \ge (\tfrac{1}{2}\log 5)\cdot 10n\).
Solution:
(d) Put \(f(x) = x^2 (1-x)^2 (2x-1)\), then \(f(x)=0\) for \(0\lt x\lt 1\) implies \(x = \frac{1}{2}\pm\frac{\sqrt{5}}{10}\). Since \(|f\left(\frac{1}{2}\pm\frac{\sqrt{5}}{10}\right)| = 5^{-5/2}\) and \(f(0) = f(1)= 0\), \(\max_{0\le x\le 1} | x^2 (1-x)^2 (2x-1)| = 5^{-5/2}\).
(e) \[I = I(P) = \int_{0}^{1}P(x) dx \le \int_{0}^{1} \max_{0\le t\le 1}P(t) dx =\int_{0}^{1} 5^{-5n} dx = 5^{-5n}\]
Ronaldthype
Отдельная тема — авто. Однажды пришлось открыть авто ключи внутри спб, ситуация вообще неприятная: машина закрыта, ключи на сиденье. По запросам открыть авто без повреждений спб находится куча служб, цены разные. Плюс интересовался стоимость вскрытия авто спб и срочное вскрытие авто спб ночью. Для себя сделал вывод, что лучше сразу обращаться к проверенным мастерам, которые работают официально и дают чек. Замки и фурнитура AVERS, которые пр
Megastiz
https://harmony-transportation.com/ru/wayaway-tor-ofitsialnoe-shop-zerkalo-vey_7023.html
Problem: Let \(R(x)\) be as in Exercise 24(c). Show that \(R(x)\ll x^{1/3}\log x\).
Solution: Put \(f(t) = \sqrt{x-t^{2}}\), then \(x^{-1/2} \le -f''(t) \le 2\sqrt{2}x^{-1/2}\) for \(0\le t \le \sqrt{x/2}\). By Exercise 25, \[\sum_{0 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\}) \ll x^{1/3}\log x.\] Hence, \[R(x) = -8\sum_{1 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\})+O(1) \ll x^{1/3}\log x.\]
Dongwan
Awesome
doyeobi99
Thanks! :)
Problem: Show that if \(U \le \sqrt{x}\), then \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll x^{1/3}\log x.\] Let \(\Delta(x)\) be as in Exercise 23(b). Show that \(\Delta(x)\ll x^{1/3}(\log x)^2\).
Solution: Put \(f(t) = x/t\), then \(1/(2U/(2x^{1/3}))^{3}\le f''(t)\le 8/(2U/(2x^{1/3}))^{3}\) for \(U \lt t \le 2U\). By Exercise 25, \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll U (2U/(2x^{1/3}))^{-1} \log 2(2U/(2x^{1/3})) + (2U/(2x^{1/3}))^2\ll x^{1/3}\log x.\] By applying this \(O(\log x)\) times, \begin{align*} \Delta (x) = -2 \sum_{n \le \sqrt{x}}B_1 (\{x/n\}) + O(1)\ll x^{1/3}(\log x)^2. \end{align*}
There is no comment yet!
Problem: (a) Show that if \((a,q)=1\), and \(\beta\) is real, then \[ \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = B_1(\{ q\beta \}). \] (b) Show that if \(A \geq 1\), \(\; |f'(x) - a/q| \leq A/q^2\) for \(1 \leq x \leq q\), and \((a,q)=1\), then \[ \sum_{n=1}^{q} B_1(\{ f(n) \}) \;\ll\; A. \] (c) Suppose that \(Q \geq 1\) is an integer, \(B \geq 1\), and that \({1}/{Q^3} \leq \pm f''(x) \leq {B}/{Q^3}\) for \(0 \leq x \leq N\) where the choice of sign is independent of \(x\). Show that numbers \(a_r, q_r, N_r\) can be determined, \(0 \leq r \leq R\) for some \(R\), so that (i) \((a_r, q_r) = 1\), (ii) \(q_r \leq Q\), (iii) \(\lvert f'(N_r) - a_r/q_r \rvert \leq 1/(q_r Q)\), (iv) \(N_0 = 0\), \(N_r = N_{r-1} + q_{r-1}\) for \(1 \leq r \leq R\), and \(N - Q \leq N_R \leq N\).
(d) Show that under the above hypotheses \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B(R+1) + Q. \] (e) Show that the number of \(s\) for which \(a_s/q_s = a_r/q_r\) is \(\ll Q^2/q^2\). Let \(1 \leq q \leq Q\). Show that the number of \(r\) for which \(q_r = q\) is \[ \ll \; (Q/q)^2 \left( BNq / Q^3 + 1 \right). \] (f) Conclude that under the hypotheses of (c), \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B^2 N Q^{-1} \log 2Q + B Q^2. \]
Solution: (a) \[\exp\left(2\pi i \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \right) = \exp(2\pi i B_1(\{ q\beta \})).\] Since \[\sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{n}{q} + \beta \right\} \right),\] \[-\frac{1}{2}\le \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \le \frac{1}{2}.\]
(b) \begin{align*} \sum_{n=1}^{q} B_1(\{ f(n) \}) &= \sum_{n=1}^{q} \left( \{ f(n) \} - \left\{ \frac{a}{q}n + f(1) \right\} \right) + \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + f(1)\right\} \right)\ll A. \end{align*}
(c) By Dirichlet's approximation theorem, it's done.
(d) With (b), it's done.
There is no comment yet!
Problem: Let \(r(n)\) be the number of ordered pairs \((a,b)\) of integers for which \(a^2+b^2=n\).
(a) Show that \[ \sum_{n \le x} r(n) = 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \] (b) Show that \[ \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} = \left( \frac{\pi}{8} + \frac{1}{2} \right) x - B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \] (c) Write \(\sum_{0 \le n \le x} r(n) = \pi x + R(x)\). Show that \[ R(x) = -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \]
Solution: (a) \begin{align*} \sum_{n \le x} r(n) &= \#\{(a,b)\in \mathbb{Z}^2: a^2+b^2 \le x\}\\ &= \#\{(0,0)\} +4\times \#\left\{(a,0):a\le\sqrt{x}\right\}\\ &\qquad\qquad+ 8\times \#\left\{(a,b): a^2+b^2 \le x,\ a\le b\right\} \\ &\qquad\qquad\qquad- 4\times \#\left\{(a,b): a,b\le \sqrt{x/2}\right\}\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \end{align*}
(b) \begin{align*} \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d[u] \\ &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d\left(u-B_1(\{u\}) \right)\\ &= \left( \frac{\pi}{8} + \frac{1}{2} \right) x - \left(\left. \sqrt{x-u^2}B_1(\{u\})\right|_{0}^{\sqrt{x/2}} + \int_{0+}^{\sqrt{x/2}}\frac{u}{\sqrt{x - u^2}}B_1(\{u\})du\right)\\ &=\left( \frac{\pi}{8} + \frac{1}{2} \right) x - \sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \end{align*}
(c) \begin{align*} \sum_{n \le x} r(n) &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right]- 4 \left[ \sqrt{x/2} \right]^2\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left( \sqrt{x - n^2}- 1/2 -B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) \right) - 4 \left[ \sqrt{x/2} \right]^2\\ &= 4\left[ \sqrt{x} \right] - 4 \left[ \sqrt{x/2} \right]^2 + {\pi}x + 4 x - 8\sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right)\\ &\qquad\qquad- 4\sqrt{x} -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right)-4\left[\sqrt{x/2}\right] + O(1)\\ &=\pi x -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \end{align*}
There is no comment yet!