Welcome to Doyeob Lee's Blog!

This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.

If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!

Recent Posts

MNT - Montgomery Exercise 2.2.1

Problem: (a) Let \(d_n = [1,2, \dots, n]\). Show that \(d_n = e^{\psi(n)}\).

(b) Let \( P \in \mathbb{Z}[x] \), \(\deg P \le n\). Put \(I = I(P) = \int_{0}^{1}P(x)dx\). Show that \(Id_{n+1}\in \mathbb{Z}\), and hence that \(d_{n+1} \ge 1/|I|\) if \(I \neq 0\).

(c) Show that there is a polynomial \(P\) as above so that \(Id_{n+1} = 1\).

(d) Verify that \(\max_{0\le x\le 1} | x^2 (1-x)^2 (2x-1)| = 5^{-5/2}\).

(e) For \(P(x) = \left(x^2(1-x)^2 (2x-1) \right)^{2n} \), verify that \(0 \lt I \lt 5^{-5n}\).

(f) Show that \(\psi (10n+1) \ge (\tfrac{1}{2}\log 5)\cdot 10n\).

Solution:

(d) Put \(f(x) = x^2 (1-x)^2 (2x-1)\), then \(f(x)=0\) for \(0\lt x\lt 1\) implies \(x = \frac{1}{2}\pm\frac{\sqrt{5}}{10}\). Since \(|f\left(\frac{1}{2}\pm\frac{\sqrt{5}}{10}\right)| = 5^{-5/2}\) and \(f(0) = f(1)= 0\), \(\max_{0\le x\le 1} | x^2 (1-x)^2 (2x-1)| = 5^{-5/2}\).

(e) \[I = I(P) = \int_{0}^{1}P(x) dx \le \int_{0}^{1} \max_{0\le t\le 1}P(t) dx =\int_{0}^{1} 5^{-5n} dx = 5^{-5n}\]

Comments

Ronaldthype

Отдельная тема — авто. Однажды пришлось открыть авто ключи внутри спб, ситуация вообще неприятная: машина закрыта, ключи на сиденье. По запросам открыть авто без повреждений спб находится куча служб, цены разные. Плюс интересовался стоимость вскрытия авто спб и срочное вскрытие авто спб ночью. Для себя сделал вывод, что лучше сразу обращаться к проверенным мастерам, которые работают официально и дают чек. Замки и фурнитура AVERS, которые пр

Megastiz

https://harmony-transportation.com/ru/wayaway-tor-ofitsialnoe-shop-zerkalo-vey_7023.html

Name

Comment

Name

Comment

MNT - Montgomery Exercise 2.1.27

Problem: Let \(R(x)\) be as in Exercise 24(c). Show that \(R(x)\ll x^{1/3}\log x\).

Solution: Put \(f(t) = \sqrt{x-t^{2}}\), then \(x^{-1/2} \le -f''(t) \le 2\sqrt{2}x^{-1/2}\) for \(0\le t \le \sqrt{x/2}\). By Exercise 25, \[\sum_{0 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\}) \ll x^{1/3}\log x.\] Hence, \[R(x) = -8\sum_{1 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\})+O(1) \ll x^{1/3}\log x.\]

Comments

Dongwan

Awesome

doyeobi99

Thanks! :)

Name

Comment

Name

Comment

MNT - Montgomery Exercise 2.1.26

Problem: Show that if \(U \le \sqrt{x}\), then \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll x^{1/3}\log x.\] Let \(\Delta(x)\) be as in Exercise 23(b). Show that \(\Delta(x)\ll x^{1/3}(\log x)^2\).

Solution: Put \(f(t) = x/t\), then \(1/(2U/(2x^{1/3}))^{3}\le f''(t)\le 8/(2U/(2x^{1/3}))^{3}\) for \(U \lt t \le 2U\). By Exercise 25, \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll U (2U/(2x^{1/3}))^{-1} \log 2(2U/(2x^{1/3})) + (2U/(2x^{1/3}))^2\ll x^{1/3}\log x.\] By applying this \(O(\log x)\) times, \begin{align*} \Delta (x) = -2 \sum_{n \le \sqrt{x}}B_1 (\{x/n\}) + O(1)\ll x^{1/3}(\log x)^2. \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.1.25

Problem: (a) Show that if \((a,q)=1\), and \(\beta\) is real, then \[ \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = B_1(\{ q\beta \}). \] (b) Show that if \(A \geq 1\), \(\; |f'(x) - a/q| \leq A/q^2\) for \(1 \leq x \leq q\), and \((a,q)=1\), then \[ \sum_{n=1}^{q} B_1(\{ f(n) \}) \;\ll\; A. \] (c) Suppose that \(Q \geq 1\) is an integer, \(B \geq 1\), and that \({1}/{Q^3} \leq \pm f''(x) \leq {B}/{Q^3}\) for \(0 \leq x \leq N\) where the choice of sign is independent of \(x\). Show that numbers \(a_r, q_r, N_r\) can be determined, \(0 \leq r \leq R\) for some \(R\), so that (i) \((a_r, q_r) = 1\), (ii) \(q_r \leq Q\), (iii) \(\lvert f'(N_r) - a_r/q_r \rvert \leq 1/(q_r Q)\), (iv) \(N_0 = 0\), \(N_r = N_{r-1} + q_{r-1}\) for \(1 \leq r \leq R\), and \(N - Q \leq N_R \leq N\).

(d) Show that under the above hypotheses \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B(R+1) + Q. \] (e) Show that the number of \(s\) for which \(a_s/q_s = a_r/q_r\) is \(\ll Q^2/q^2\). Let \(1 \leq q \leq Q\). Show that the number of \(r\) for which \(q_r = q\) is \[ \ll \; (Q/q)^2 \left( BNq / Q^3 + 1 \right). \] (f) Conclude that under the hypotheses of (c), \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B^2 N Q^{-1} \log 2Q + B Q^2. \]

Solution: (a) \[\exp\left(2\pi i \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \right) = \exp(2\pi i B_1(\{ q\beta \})).\] Since \[\sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{n}{q} + \beta \right\} \right),\] \[-\frac{1}{2}\le \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \le \frac{1}{2}.\]

(b) \begin{align*} \sum_{n=1}^{q} B_1(\{ f(n) \}) &= \sum_{n=1}^{q} \left( \{ f(n) \} - \left\{ \frac{a}{q}n + f(1) \right\} \right) + \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + f(1)\right\} \right)\ll A. \end{align*}

(c) By Dirichlet's approximation theorem, it's done.

(d) With (b), it's done.

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.1.24

Problem: Let \(r(n)\) be the number of ordered pairs \((a,b)\) of integers for which \(a^2+b^2=n\).

(a) Show that \[ \sum_{n \le x} r(n) = 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \] (b) Show that \[ \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} = \left( \frac{\pi}{8} + \frac{1}{2} \right) x - B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \] (c) Write \(\sum_{0 \le n \le x} r(n) = \pi x + R(x)\). Show that \[ R(x) = -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \]

Solution: (a) \begin{align*} \sum_{n \le x} r(n) &= \#\{(a,b)\in \mathbb{Z}^2: a^2+b^2 \le x\}\\ &= \#\{(0,0)\} +4\times \#\left\{(a,0):a\le\sqrt{x}\right\}\\ &\qquad\qquad+ 8\times \#\left\{(a,b): a^2+b^2 \le x,\ a\le b\right\} \\ &\qquad\qquad\qquad- 4\times \#\left\{(a,b): a,b\le \sqrt{x/2}\right\}\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \end{align*}

(b) \begin{align*} \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d[u] \\ &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d\left(u-B_1(\{u\}) \right)\\ &= \left( \frac{\pi}{8} + \frac{1}{2} \right) x - \left(\left. \sqrt{x-u^2}B_1(\{u\})\right|_{0}^{\sqrt{x/2}} + \int_{0+}^{\sqrt{x/2}}\frac{u}{\sqrt{x - u^2}}B_1(\{u\})du\right)\\ &=\left( \frac{\pi}{8} + \frac{1}{2} \right) x - \sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \end{align*}

(c) \begin{align*} \sum_{n \le x} r(n) &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right]- 4 \left[ \sqrt{x/2} \right]^2\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left( \sqrt{x - n^2}- 1/2 -B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) \right) - 4 \left[ \sqrt{x/2} \right]^2\\ &= 4\left[ \sqrt{x} \right] - 4 \left[ \sqrt{x/2} \right]^2 + {\pi}x + 4 x - 8\sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right)\\ &\qquad\qquad- 4\sqrt{x} -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right)-4\left[\sqrt{x/2}\right] + O(1)\\ &=\pi x -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \end{align*}

Comments

There is no comment yet!

Name

Comment