This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: (Davenport 1932) Let \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d}.\]
(a) By recalling Exercise 2.1.16(a), or otherwise, show that \(f(n) \ge 0\) for all \(n\).
(b) Show that \(f(n) \ll \log\log n\) for \(n \ge 3\).
(c) Show that \(f(n) \sim \frac{1}{4}\log\log n\) if \(n = \prod_{y \lt p \le y^2}p\).
(d) Show that \(f(n) \le\left( \frac{1}{4} + o(1)\right)\log\log n\) as \(n\to \infty\).
Solution: (a) By Exercise 2.1.16(a), \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d} = \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1} \ge 0.\]
(b) Note that \begin{align*} f(n) \le \sum_{p \mid n} \frac{\log p}{p - 1}. \end{align*} Since \({\log x}/{(x - 1)}\) is decreasing function for all \(x\gt 0\), it is enough to show only when \(n = \prod_{p \le y}p\). Now, \begin{align*} \sum_{p \mid n} \frac{\log p}{p - 1} &= \sum_{p \le y} \frac{\log p}{p-1}\\ &\ll \log y = \log \log n. \end{align*}
(c) \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{1}{2} + o(1)\right) \left(\log y + O(1) \right)\\ &= \left(\frac{1}{4} + o(1)\right)\log\log n \end{align*}
(d) Suppose \(n = \prod_{y^{a} \lt p \le y^2}p\), then \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y^{a} \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y^{a} \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{\log y^{a}}{2\log y} + o(1)\right) \left(\log y^2 - \log y^{a} + O(1) \right)\\ &= \left(\frac{a}{2} + o(1)\right) \left((2-a)\log y+ O(1) \right)\\ &= \left(\frac{a(2-a)}{4} + o(1)\right)\log\log n\le\left( \frac{1}{4} + o(1)\right)\log\log n. \end{align*}
There is no comment yet!
Problem: Let \(d_k (n)\) be as in Exercise 2.1.18. Show that if \(k\) and \(\kappa\) are fixed, then \[\sum_{n\le x} d_k (n) ^{\kappa} \ll x (\log x) ^{k ^{\kappa}-1}.\] for \(x \ge 2\).
Solution: Since \[\sum_{p \le x}d_{k}(p)^{\kappa}\log p \ll x, \qquad \sum_{\substack{p^{m}\\m\ge 2}}\frac{d_{k}(p^{m})^{\kappa}m\log p}{p^{m}} \ll 1,\] by Corollary 2.15, \begin{align*} \sum_{n\le x} d_k (n) ^{\kappa} &\ll \frac{x}{\log x} \prod_{p \le x} \left(1 + \frac{d_k (p) ^{\kappa}}{p}+\frac{d_k (p^2) ^{\kappa}}{p^2}+\cdots \right)\\ &\ll x (\log x) ^{k ^{\kappa}-1}. \end{align*}
There is no comment yet!
Problem: Let \(f(n) = \prod_{p|n}(1+p^{-1/2})\).
(a) Show that there is a constant \(a\) such that if \(n\ge 3\), then \[f(n) \lt \exp (a(\log n)^{1/2}(\log \log n)^{-1}). \]
(b) Show that \(\sum_{n\le x}f(n) = cx + O(x^{1/2})\) where \(c = \prod_{p}(1+p^{-3/2})\).
Solution: (a) It is enough to show only when \(n = \prod_{p\le y} p\). Note that \(\log \log n = \log y + O(1)\) and \[\sum_{p\le y}p^{-1/2} = \int_{2-}^{y} u^{-1/2} d\pi(u) \ll y^{1/2}(\log y)^{-1}.\] Now, \begin{align*} \log f(n) &= \sum_{p\le y}\log(1+p^{-1/2})\\ &=\sum_{p\le y}p^{-1/2} + O \left(\sum_{p\le y}p^{-1}\right)\\ &\ll y^{1/2}(\log y)^{-1} = (\log n)^{1/2} (\log \log n)^{-1}. \end{align*}
(b) Note that \[f(n) = \sum_{d|n} \mu(d)^2 d^{-1/2}.\] Hence, \begin{align*} \sum_{n\le x}f(n) &= \sum_{n\le x}\sum_{d|n} \mu(d)^2 d^{-1/2}\\ &=x\sum_{d\le x}\mu(d)^2 d^{-3/2} + O\left(\sum_{d\le x} \mu(d)^2 d^{-1/2}\right)\\ &= x\sum_{d=1}^{\infty}\mu(d)^2 d^{-3/2} + \sum_{d \gt x}\mu(d)^2 d^{-3/2} + O(x^{1/2})\\ &= cx + O(x^{1/2}). \end{align*}
There is no comment yet!
Problem: Show that \(d(n) \le \sqrt{3n}\) with equality if and only if \(n=12\).
Solution: Follow the steps in proving (2.20). With \(n = \prod_p p^{a_p}\), \[\frac{d(n)}{n^{1/2}} = \prod_{p}\frac{a_p + 1}{p^{a_p / 2}},\] which be maximized by \(a_p = [(p^{1/2}-1)^{-1}].\) Since \(a_2 = 2\), \(a_3 = 1\), and \(a_p = 0\) for \(p \ge 5\), \(d(n) \le \sqrt{3n}\), where equality holds when \(n = \prod_p p^{a_p} = 12\).
There is no comment yet!
Problem: Let \(\sigma(n) = \sum_{d|n}d\).
(a) Show that \(\sigma(n) \varphi(n) \le n^2\) for all \(n \ge 1\).
(b) Deduce that \(n+1 \le \sigma(n) \le e^{C_0}n\big(\log \log n + O(1)\big)\) for all \(n\ge 3\).
Solution: (a) Note that \[\sigma(p^a) \varphi(p^a) = p^{2a} - p^{a-1} \le p^{2a} .\] Hence, for \(n = p_{1}^{\alpha_1} p_{2}^{\alpha_2} \cdots p_{k}^{\alpha_k}\), \[\sigma(n) \varphi(n) = \sigma({p_{1}^{\alpha_1}})\varphi(p_{1}^{\alpha_1}) \cdots \sigma({p_{k}^{\alpha_k}})\varphi(p_{k}^{\alpha_k}) \le p_{1}^{2\alpha_1} \cdots p_{k}^{2\alpha_k} = n^2.\]
(b) By Theorem 2.9, we're done.
There is no comment yet!