This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: (Bateman 1949) Let Let \(\Phi_q(z)\) denote the \(q^{\text{th}}\) cyclotomic polynomial,\[ \Phi_q(z) \;=\; \prod_{\substack{a=1 \\ (a,q)=1}}^{q} \bigl(z - e(a/q)\bigr), \]where \(e(\theta) = e^{2\pi i \theta}\).
(a) Show that \[ \prod_{d \mid q} \Phi_d(z) \;=\; z^{\,q} - 1. \]
(b) Show that \[ \Phi_q(z) \;=\; \prod_{d \mid q}\bigl(z^{\,d}-1\bigr)^{\mu(q/d)}. \]
(c) If \(P(z)=\sum p_n z^n\) and \(Q(z)=\sum q_n z^n\) are polynomials with real coefficients, then we say that \(P \preccurlyeq Q\) if \(|p_n|\le q_n\) for all non-negative integers \(n\). Show that if \(P_1 \preccurlyeq Q_1\) and \(P_2 \preccurlyeq Q_2\), then \(P_1+P_2 \preccurlyeq Q_1+Q_2\) and \(P_1P_2 \preccurlyeq Q_1Q_2\).
(d) Show that \(\Phi_q(z) \preccurlyeq Q_q(z)\) where \[ Q_q(z) \;=\; \prod_{d \mid q}\Bigl(1 + z^{d} + z^{2d} + \cdots + z^{q-d}\Bigr). \]
(e) Show that \(Q_q(1) = q^{d(q)/2}\).
(f) Show that for any \(\varepsilon>0\) there is a \(q_0(\varepsilon)\) such that if \(q>q_0(\varepsilon)\), then all coefficients of \(\Phi_q\) have absolute value not exceeding \[ \exp\!\Bigl(q^{(\log 2+\varepsilon)/\log\log q}\Bigr). \]
Solution:
daniel.wright
We've developed a unique advertising platform that places your business directly in front of people searching for your service - no waiting, no complex setup. Campaigns usually go live in one day, and you can update your keywords anytime at no extra cost. Would you like me to show you a few examples from your industry?
Problem: (cf. Bateman & Grosswald 1958) Let \(\mathcal{F}\) be the set of 'power-full' numbers where \(n\) is power-full if \(p|n \Rightarrow p^2 |n\).
(a) Show that \[\sum_{n \in \mathcal{F}} n^{-s} = \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)}\] for \(\sigma \gt 1/2\).
(b) Show that \[\sum_{\substack{a,b,c\\a^2 b^3 c^6 = n}}\mu(c) = \begin{cases}1 & \text{if }n\in\mathcal{F}, \\ 0 & \text{otherwise.}\end{cases}\]
(c) Show that \[\sum_{a^2 b^3 \le y} 1 = \zeta(3/2) y^{1/2} + \zeta(2/3)y^{1/3} + O\left(y^{1/5}\right).\]
(d) Show that \[\sum_{\substack{n \le x\\n \in \mathcal{F}}} 1 = \frac{\zeta(3/2)}{\zeta(3)} x^{1/2} + \frac{\zeta(2/3)}{\zeta(2)}x^{1/3} + O\left(x^{1/5}\right).\]
Solution: (a) \begin{align*} \sum_{n \in \mathcal{F}} n^{-s} &= \prod_{p} \left(1 + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} \cdots \right)\\ &= \prod_{p} \left(1 + \frac{p^{-2s}}{1-p^{-s}}\right)\\ &= \prod_{p} \left(\frac{1 - p^{-6s} }{(1-p^{-2s})(1-p^{-3s})}\right)\\ &= \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} \end{align*}
(b) \begin{align*}\sum_{n \in \mathcal{F}} n^{-s} = \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} = \sum_{n=1}^{\infty}\left(\sum_{\substack{a,b,c\\a^2 b^3 c^6 = n}}\mu(c)\right) n^{-s} \end{align*}
(c) \begin{align*} \sum_{a^2 b^3 \le y} 1 &= \sum_{a^2 \le y^{2/5}} \sum_{b^{3}\le y a^{-2}}1 + \sum_{b^3 \le y^{3/5}} \sum_{a^2 \le y b^{-3}}1 - \sum_{a^2 \le y^{2/5}}1\sum_{b^3 \le y^{3/5}}1\\ &= \sum_{a \le y^{1/5}} \sum_{b\le y^{1/3} a^{-2/3}}1 + \sum_{b \le y^{1/5}} \sum_{a \le y^{1/2} b^{-3/2}}1 - \sum_{a\le y^{1/5}}1\sum_{b\le y^{1/5}}1\\ &= \sum_{a \le y^{1/5}} y^{1/3} a^{-2/3} + \sum_{b \le y^{1/5}} y^{1/2} b^{-3/2} - y^{2/5} + O(y^{1/5})\\ &= y^{1/3} \left(3y^{1/15} + \zeta(2/3) + O(y^{-2/15}) \right) \\ &\qquad\qquad+ y^{1/2} \left(\zeta(3/2)-2y^{-1/10}+ O(y^{-3/10}) \right)\\ &\qquad\qquad\qquad - y^{2/5} + O(y^{1/5}) \\ &=\zeta(3/2) y^{1/2} + \zeta(2/3)y^{1/3} + O\left(y^{1/5}\right) \end{align*}
(d)\begin{align*} \sum_{\substack{n \le x\\n \in \mathcal{F}}} 1 & = \sum_{\substack{a,b,c\\a^2 b^3 c^6 \le x}}\mu(c)\\ & =\sum_{c^{6} \le x}\mu(c) \sum_{a^2 b^3 \le x/c^{6}} 1\\ & =\sum_{c^{6} \le x}\mu(c) \left(\zeta(3/2) x^{1/2}/c^{3} + \zeta(2/3) x^{1/3}/c^2 + O\left(x^{1/5}/c^{6/5}\right) \right)\\ &=\frac{\zeta(3/2)}{\zeta(3)} x^{1/2} + \frac{\zeta(2/3)}{\zeta(2)}x^{1/3} + O\left(x^{1/5}\right) \end{align*}
There is no comment yet!
Problem: (Davenport 1932) Let \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d}.\]
(a) By recalling Exercise 2.1.16(a), or otherwise, show that \(f(n) \ge 0\) for all \(n\).
(b) Show that \(f(n) \ll \log\log n\) for \(n \ge 3\).
(c) Show that \(f(n) \sim \frac{1}{4}\log\log n\) if \(n = \prod_{y \lt p \le y^2}p\).
(d) Show that \(f(n) \le\left( \frac{1}{4} + o(1)\right)\log\log n\) as \(n\to \infty\).
Solution: (a) By Exercise 2.1.16(a), \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d} = \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1} \ge 0.\]
(b) Note that \begin{align*} f(n) \le \sum_{p \mid n} \frac{\log p}{p - 1}. \end{align*} Since \({\log x}/{(x - 1)}\) is decreasing function for all \(x\gt 0\), it is enough to show only when \(n = \prod_{p \le y}p\). Now, \begin{align*} \sum_{p \mid n} \frac{\log p}{p - 1} &= \sum_{p \le y} \frac{\log p}{p-1}\\ &\ll \log y = \log \log n. \end{align*}
(c) \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{1}{2} + o(1)\right) \left(\log y + O(1) \right)\\ &= \left(\frac{1}{4} + o(1)\right)\log\log n \end{align*}
(d) Suppose \(n = \prod_{y^{a} \lt p \le y^2}p\), then \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y^{a} \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y^{a} \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{\log y^{a}}{2\log y} + o(1)\right) \left(\log y^2 - \log y^{a} + O(1) \right)\\ &= \left(\frac{a}{2} + o(1)\right) \left((2-a)\log y+ O(1) \right)\\ &= \left(\frac{a(2-a)}{4} + o(1)\right)\log\log n\le\left( \frac{1}{4} + o(1)\right)\log\log n. \end{align*}
There is no comment yet!
Problem: Let \(d_k (n)\) be as in Exercise 2.1.18. Show that if \(k\) and \(\kappa\) are fixed, then \[\sum_{n\le x} d_k (n) ^{\kappa} \ll x (\log x) ^{k ^{\kappa}-1}.\] for \(x \ge 2\).
Solution: Since \[\sum_{p \le x}d_{k}(p)^{\kappa}\log p \ll x, \qquad \sum_{\substack{p^{m}\\m\ge 2}}\frac{d_{k}(p^{m})^{\kappa}m\log p}{p^{m}} \ll 1,\] by Corollary 2.15, \begin{align*} \sum_{n\le x} d_k (n) ^{\kappa} &\ll \frac{x}{\log x} \prod_{p \le x} \left(1 + \frac{d_k (p) ^{\kappa}}{p}+\frac{d_k (p^2) ^{\kappa}}{p^2}+\cdots \right)\\ &\ll x (\log x) ^{k ^{\kappa}-1}. \end{align*}
There is no comment yet!
Problem: Let \(f(n) = \prod_{p|n}(1+p^{-1/2})\).
(a) Show that there is a constant \(a\) such that if \(n\ge 3\), then \[f(n) \lt \exp (a(\log n)^{1/2}(\log \log n)^{-1}). \]
(b) Show that \(\sum_{n\le x}f(n) = cx + O(x^{1/2})\) where \(c = \prod_{p}(1+p^{-3/2})\).
Solution: (a) It is enough to show only when \(n = \prod_{p\le y} p\). Note that \(\log \log n = \log y + O(1)\) and \[\sum_{p\le y}p^{-1/2} = \int_{2-}^{y} u^{-1/2} d\pi(u) \ll y^{1/2}(\log y)^{-1}.\] Now, \begin{align*} \log f(n) &= \sum_{p\le y}\log(1+p^{-1/2})\\ &=\sum_{p\le y}p^{-1/2} + O \left(\sum_{p\le y}p^{-1}\right)\\ &\ll y^{1/2}(\log y)^{-1} = (\log n)^{1/2} (\log \log n)^{-1}. \end{align*}
(b) Note that \[f(n) = \sum_{d|n} \mu(d)^2 d^{-1/2}.\] Hence, \begin{align*} \sum_{n\le x}f(n) &= \sum_{n\le x}\sum_{d|n} \mu(d)^2 d^{-1/2}\\ &=x\sum_{d\le x}\mu(d)^2 d^{-3/2} + O\left(\sum_{d\le x} \mu(d)^2 d^{-1/2}\right)\\ &= x\sum_{d=1}^{\infty}\mu(d)^2 d^{-3/2} + \sum_{d \gt x}\mu(d)^2 d^{-3/2} + O(x^{1/2})\\ &= cx + O(x^{1/2}). \end{align*}
There is no comment yet!