Welcome to Doyeob Lee's Blog!

This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.

If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!

Recent Posts

MNT - Montgomery Exercise 2.1.27

Problem: Let \(R(x)\) be as in Exercise 24(c). Show that \(R(x)\ll x^{1/3}\log x\).

Solution: Put \(f(t) = \sqrt{x-t^{2}}\), then \(x^{-1/2} \le -f''(t) \le 2\sqrt{2}x^{-1/2}\) for \(0\le t \le \sqrt{x/2}\). By Exercise 25, \[\sum_{0 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\}) \ll x^{1/3}\log x.\] Hence, \[R(x) = -8\sum_{1 \le n \le \sqrt{x/2}} B_{1} (\{\sqrt{x-n^2}\})+O(1) \ll x^{1/3}\log x.\]

Comments

Dongwan

Awesome

doyeobi99

Thanks! :)

CharlesPiown

AN $80000 TRANSFER FOR AN IMPRESSIVE THANKSGIVING https://green.7112182096.workers.dev/redirect?url=https%3A%2F%2F90032623.blogspot.com%3F3254

BypeBreve

Photos for my escort application are uploaded. Let me know if the quality is good. Preview: https://tinyurl.com/4a77ax99

Name

Comment

Name

Comment

MNT - Montgomery Exercise 2.1.26

Problem: Show that if \(U \le \sqrt{x}\), then \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll x^{1/3}\log x.\] Let \(\Delta(x)\) be as in Exercise 23(b). Show that \(\Delta(x)\ll x^{1/3}(\log x)^2\).

Solution: Put \(f(t) = x/t\), then \(1/(2U/(2x^{1/3}))^{3}\le f''(t)\le 8/(2U/(2x^{1/3}))^{3}\) for \(U \lt t \le 2U\). By Exercise 25, \[\sum_{U \lt n \le 2U} B_1(\{x/n\}) \ll U (2U/(2x^{1/3}))^{-1} \log 2(2U/(2x^{1/3})) + (2U/(2x^{1/3}))^2\ll x^{1/3}\log x.\] By applying this \(O(\log x)\) times, \begin{align*} \Delta (x) = -2 \sum_{n \le \sqrt{x}}B_1 (\{x/n\}) + O(1)\ll x^{1/3}(\log x)^2. \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.1.25

Problem: (a) Show that if \((a,q)=1\), and \(\beta\) is real, then \[ \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = B_1(\{ q\beta \}). \] (b) Show that if \(A \geq 1\), \(\; |f'(x) - a/q| \leq A/q^2\) for \(1 \leq x \leq q\), and \((a,q)=1\), then \[ \sum_{n=1}^{q} B_1(\{ f(n) \}) \;\ll\; A. \] (c) Suppose that \(Q \geq 1\) is an integer, \(B \geq 1\), and that \({1}/{Q^3} \leq \pm f''(x) \leq {B}/{Q^3}\) for \(0 \leq x \leq N\) where the choice of sign is independent of \(x\). Show that numbers \(a_r, q_r, N_r\) can be determined, \(0 \leq r \leq R\) for some \(R\), so that (i) \((a_r, q_r) = 1\), (ii) \(q_r \leq Q\), (iii) \(\lvert f'(N_r) - a_r/q_r \rvert \leq 1/(q_r Q)\), (iv) \(N_0 = 0\), \(N_r = N_{r-1} + q_{r-1}\) for \(1 \leq r \leq R\), and \(N - Q \leq N_R \leq N\).

(d) Show that under the above hypotheses \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B(R+1) + Q. \] (e) Show that the number of \(s\) for which \(a_s/q_s = a_r/q_r\) is \(\ll Q^2/q^2\). Let \(1 \leq q \leq Q\). Show that the number of \(r\) for which \(q_r = q\) is \[ \ll \; (Q/q)^2 \left( BNq / Q^3 + 1 \right). \] (f) Conclude that under the hypotheses of (c), \[ \sum_{n=0}^{N} B_1(\{ f(n) \}) \;\ll\; B^2 N Q^{-1} \log 2Q + B Q^2. \]

Solution: (a) \[\exp\left(2\pi i \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \right) = \exp(2\pi i B_1(\{ q\beta \})).\] Since \[\sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) = \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{n}{q} + \beta \right\} \right),\] \[-\frac{1}{2}\le \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + \beta \right\} \right) \le \frac{1}{2}.\]

(b) \begin{align*} \sum_{n=1}^{q} B_1(\{ f(n) \}) &= \sum_{n=1}^{q} \left( \{ f(n) \} - \left\{ \frac{a}{q}n + f(1) \right\} \right) + \sum_{n=1}^{q} B_1\!\left( \left\{ \frac{a}{q}n + f(1)\right\} \right)\ll A. \end{align*}

(c) By Dirichlet's approximation theorem, it's done.

(d) With (b), it's done.

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.1.24

Problem: Let \(r(n)\) be the number of ordered pairs \((a,b)\) of integers for which \(a^2+b^2=n\).

(a) Show that \[ \sum_{n \le x} r(n) = 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \] (b) Show that \[ \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} = \left( \frac{\pi}{8} + \frac{1}{2} \right) x - B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \] (c) Write \(\sum_{0 \le n \le x} r(n) = \pi x + R(x)\). Show that \[ R(x) = -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \]

Solution: (a) \begin{align*} \sum_{n \le x} r(n) &= \#\{(a,b)\in \mathbb{Z}^2: a^2+b^2 \le x\}\\ &= \#\{(0,0)\} +4\times \#\left\{(a,0):a\le\sqrt{x}\right\}\\ &\qquad\qquad+ 8\times \#\left\{(a,b): a^2+b^2 \le x,\ a\le b\right\} \\ &\qquad\qquad\qquad- 4\times \#\left\{(a,b): a,b\le \sqrt{x/2}\right\}\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right] - 4 \left[ \sqrt{x/2} \right]^2. \end{align*}

(b) \begin{align*} \sum_{1 \le n \le \sqrt{x/2}} \sqrt{x - n^2} &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d[u] \\ &= \int_{0+}^{\sqrt{x/2}}\sqrt{x - u^2}\ d\left(u-B_1(\{u\}) \right)\\ &= \left( \frac{\pi}{8} + \frac{1}{2} \right) x - \left(\left. \sqrt{x-u^2}B_1(\{u\})\right|_{0}^{\sqrt{x/2}} + \int_{0+}^{\sqrt{x/2}}\frac{u}{\sqrt{x - u^2}}B_1(\{u\})du\right)\\ &=\left( \frac{\pi}{8} + \frac{1}{2} \right) x - \sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right) - \frac{1}{2}\sqrt{x} + O(1). \end{align*}

(c) \begin{align*} \sum_{n \le x} r(n) &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left[ \sqrt{x - n^2} \right]- 4 \left[ \sqrt{x/2} \right]^2\\ &= 1 + 4\left[ \sqrt{x} \right] + 8 \sum_{1 \le n \le \sqrt{x/2}} \left( \sqrt{x - n^2}- 1/2 -B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) \right) - 4 \left[ \sqrt{x/2} \right]^2\\ &= 4\left[ \sqrt{x} \right] - 4 \left[ \sqrt{x/2} \right]^2 + {\pi}x + 4 x - 8\sqrt{x/2}\ B_1\!\left(\left\{\sqrt{x/2}\right\}\right)\\ &\qquad\qquad- 4\sqrt{x} -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right)-4\left[\sqrt{x/2}\right] + O(1)\\ &=\pi x -8 \sum_{1 \le n \le \sqrt{x/2}} B_1\!\left(\left\{\sqrt{x - n^2}\right\}\right) + O(1). \end{align*}

Comments

There is no comment yet!

Name

Comment

MNT - Montgomery Exercise 2.1.23

Problem:Let \(B_1(x) = x - 1/2\), as in Appendix B.

(a) Show that \[ \sum_{n \le x} \frac{1}{n} = \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \] (b) Write \(\sum_{n \le x} d(n) = x \log x + (2C_0 - 1)x + \Delta(x)\). Show that \[ \Delta(x) = -2 \sum_{n \le \sqrt{x}} B_1(\{x/n\}) + O(1). \] (c) Show that \(\int_0^X \Delta(x)\, dx \ll X\).

(d) Deduce that \begin{align*} \sum_{n \le X} d(n)(X-n) &= \int_0^X \left( \sum_{n \le x} d(n) \right)dx \\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}

Solution: (a) \begin{align*} \sum_{n \le x} \frac{1}{n} &= \int_{1-}^{x} \frac{1}{u} d[u] = \int_{1-}^{x} \frac{1}{u} du - \int_{1-}^{x} \frac{1}{u} d\{u\} \\ &=\log x - \int_{1-}^{x} \frac{1}{u} d\left(\{u\}- 1/2 \right)=\log x - \int_{1-}^{x} \frac{1}{u} dB_{1}(\{u\})\\ &=\log x - \frac{1}{u} B_{1}(\{u\})\Bigg|_{1}^{x} - \int_{1-}^{x} \frac{1}{u^2} B_{1}(\{u\}) du\\ &= \log x - {B_1(\{x\})}/{x} + \frac{1}{2} - \int_{1}^{x} \frac{1}{u^2}\left(\{u\}- 1/2 \right) du\\\ &= \log x - {B_1(\{x\})}/{x} + 1 - \int_{1}^{\infty} \frac{\{u\}}{u^2} du + \int_{x}^{\infty}\frac{1}{u^2}\left(\{u\}- 1/2 \right) du \\ &= \log x + C_0 - {B_1(\{x\})}/{x} + O(1/x^2). \end{align*}

(b) Note that \begin{align*} \sum_{n \le \sqrt{x}}[x/n] &= \sum_{n \le \sqrt{x}}\left(x/n- 1/2 - B_1(\{x/n\}) \right) \\ &= x\left(\frac{1}{2}\log x + C_0 - {B_1(\{\sqrt{x}\})}/{\sqrt{x}} + O(1/x) \right) - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})\\ &= \frac{1}{2}x\log x+ C_0 x - \sqrt{x} \{\sqrt{x}\} + \sqrt{x}/2 - [\sqrt{x}]/2 -\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1) . \end{align*} Hence, \begin{align*} \sum_{n \le x} d(n) &= 2 \sum_{n \le \sqrt{x}}[x/n] - [\sqrt{x}]^2 \\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \sqrt{x} - [\sqrt{x}]- [\sqrt{x}]^2 -2\sum_{n \le \sqrt{x}} B_1(\{x/n\})+ O(1)\\ &= x\log x+2 C_0 x - 2\sqrt{x} \{\sqrt{x}\} + \{\sqrt{x}\}- x + 2\sqrt{x}\{\sqrt{x}\} + \{\sqrt{x}\}^2 + \Delta (x)\\ &=x \log x + (2C_0 - 1)x + \Delta(x). \end{align*}

(c) Note that \[\left|\int_{a}^{b} B_{1}\left( \{x\} \right)dx \right| \le 1/4\] for every \(a,b\). Hence, \begin{align*} \left| \int_{0}^{X} \sum_{n \le \sqrt{x}} B_{1} (\{x/n\}) dx\right| &= \left|\sum_{0 \le k \le \sqrt{X}-1} \int_{k^2}^{(k+1)^2} \sum_{n \le k} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \sum_{n \le k}\left| \int_{k^2}^{(k+1)^2} B_{1} (\{x/n\})dx \right|\\ &\le \sum_{0 \le k \le \sqrt{X}-1} \frac{1}{4}k \ll X. \end{align*}

(d) \begin{align*} \int_0^X \left( \sum_{n \le x} d(n) \right)dx &= \int_0^X ( x \log x + (2C_0 - 1)x + \Delta(x)) dx\\ &= \frac{1}{2} X^2 \log X + \left( C_0 - \frac{3}{4} \right) X^2 + O(X). \end{align*}

Comments

There is no comment yet!

Name

Comment