This blog is a place where I upload what I’ve studied on my own. If you'd like to know more about me, please check out the 'About' page.
If you want to include mathematical symbols in the comments, you can use \(\LaTeX\) syntax. All comments are welcome!
Problem: (Bateman 1949) Let Let \(\Phi_q(z)\) denote the \(q^{\text{th}}\) cyclotomic polynomial,\[ \Phi_q(z) \;=\; \prod_{\substack{a=1 \\ (a,q)=1}}^{q} \bigl(z - e(a/q)\bigr), \]where \(e(\theta) = e^{2\pi i \theta}\).
(a) Show that \[ \prod_{d \mid q} \Phi_d(z) \;=\; z^{\,q} - 1. \]
(b) Show that \[ \Phi_q(z) \;=\; \prod_{d \mid q}\bigl(z^{\,d}-1\bigr)^{\mu(q/d)}. \]
(c) If \(P(z)=\sum p_n z^n\) and \(Q(z)=\sum q_n z^n\) are polynomials with real coefficients, then we say that \(P \preccurlyeq Q\) if \(|p_n|\le q_n\) for all non-negative integers \(n\). Show that if \(P_1 \preccurlyeq Q_1\) and \(P_2 \preccurlyeq Q_2\), then \(P_1+P_2 \preccurlyeq Q_1+Q_2\) and \(P_1P_2 \preccurlyeq Q_1Q_2\).
(d) Show that \(\Phi_q(z) \preccurlyeq Q_q(z)\) where \[ Q_q(z) \;=\; \prod_{d \mid q}\Bigl(1 + z^{d} + z^{2d} + \cdots + z^{q-d}\Bigr). \]
(e) Show that \(Q_q(1) = q^{d(q)/2}\).
(f) Show that for any \(\varepsilon>0\) there is a \(q_0(\varepsilon)\) such that if \(q>q_0(\varepsilon)\), then all coefficients of \(\Phi_q\) have absolute value not exceeding \[ \exp\!\Bigl(q^{(\log 2+\varepsilon)/\log\log q}\Bigr). \]
Solution:
Eugenemax
####### OPVA ######## ULTIMATE РТНС COLLECTION NO PAY, PREMIUM or PAYLINK DOWNLOAD ALL СР FOR FREE Description:-> lmy.de/bmRZI Webcams РТНС since 1999 FULL STICKAM, Skype, video_mail_ru Omegle, Vichatter, Interia_pl BlogTV, Online_ru, murclub_ru Complete series LS, BD, YWM Sibirian Mouse, St. Peterburg Moscow, Liluplanet, Kids Box Fattman, Falkovideo, Bibigon Paradise Birds, GoldbergVideo Fantasia Models, Cat
Problem: (cf. Bateman & Grosswald 1958) Let \(\mathcal{F}\) be the set of 'power-full' numbers where \(n\) is power-full if \(p|n \Rightarrow p^2 |n\).
(a) Show that \[\sum_{n \in \mathcal{F}} n^{-s} = \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)}\] for \(\sigma \gt 1/2\).
(b) Show that \[\sum_{\substack{a,b,c\\a^2 b^3 c^6 = n}}\mu(c) = \begin{cases}1 & \text{if }n\in\mathcal{F}, \\ 0 & \text{otherwise.}\end{cases}\]
(c) Show that \[\sum_{a^2 b^3 \le y} 1 = \zeta(3/2) y^{1/2} + \zeta(2/3)y^{1/3} + O\left(y^{1/5}\right).\]
(d) Show that \[\sum_{\substack{n \le x\\n \in \mathcal{F}}} 1 = \frac{\zeta(3/2)}{\zeta(3)} x^{1/2} + \frac{\zeta(2/3)}{\zeta(2)}x^{1/3} + O\left(x^{1/5}\right).\]
Solution: (a) \begin{align*} \sum_{n \in \mathcal{F}} n^{-s} &= \prod_{p} \left(1 + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} \cdots \right)\\ &= \prod_{p} \left(1 + \frac{p^{-2s}}{1-p^{-s}}\right)\\ &= \prod_{p} \left(\frac{1 - p^{-6s} }{(1-p^{-2s})(1-p^{-3s})}\right)\\ &= \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} \end{align*}
(b) \begin{align*}\sum_{n \in \mathcal{F}} n^{-s} = \frac{\zeta(2s)\zeta(3s)}{\zeta(6s)} = \sum_{n=1}^{\infty}\left(\sum_{\substack{a,b,c\\a^2 b^3 c^6 = n}}\mu(c)\right) n^{-s} \end{align*}
(c) \begin{align*} \sum_{a^2 b^3 \le y} 1 &= \sum_{a^2 \le y^{2/5}} \sum_{b^{3}\le y a^{-2}}1 + \sum_{b^3 \le y^{3/5}} \sum_{a^2 \le y b^{-3}}1 - \sum_{a^2 \le y^{2/5}}1\sum_{b^3 \le y^{3/5}}1\\ &= \sum_{a \le y^{1/5}} \sum_{b\le y^{1/3} a^{-2/3}}1 + \sum_{b \le y^{1/5}} \sum_{a \le y^{1/2} b^{-3/2}}1 - \sum_{a\le y^{1/5}}1\sum_{b\le y^{1/5}}1\\ &= \sum_{a \le y^{1/5}} y^{1/3} a^{-2/3} + \sum_{b \le y^{1/5}} y^{1/2} b^{-3/2} - y^{2/5} + O(y^{1/5})\\ &= y^{1/3} \left(3y^{1/15} + \zeta(2/3) + O(y^{-2/15}) \right) \\ &\qquad\qquad+ y^{1/2} \left(\zeta(3/2)-2y^{-1/10}+ O(y^{-3/10}) \right)\\ &\qquad\qquad\qquad - y^{2/5} + O(y^{1/5}) \\ &=\zeta(3/2) y^{1/2} + \zeta(2/3)y^{1/3} + O\left(y^{1/5}\right) \end{align*}
(d)\begin{align*} \sum_{\substack{n \le x\\n \in \mathcal{F}}} 1 & = \sum_{\substack{a,b,c\\a^2 b^3 c^6 \le x}}\mu(c)\\ & =\sum_{c^{6} \le x}\mu(c) \sum_{a^2 b^3 \le x/c^{6}} 1\\ & =\sum_{c^{6} \le x}\mu(c) \left(\zeta(3/2) x^{1/2}/c^{3} + \zeta(2/3) x^{1/3}/c^2 + O\left(x^{1/5}/c^{6/5}\right) \right)\\ &=\frac{\zeta(3/2)}{\zeta(3)} x^{1/2} + \frac{\zeta(2/3)}{\zeta(2)}x^{1/3} + O\left(x^{1/5}\right) \end{align*}
There is no comment yet!
Problem: (Davenport 1932) Let \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d}.\]
(a) By recalling Exercise 2.1.16(a), or otherwise, show that \(f(n) \ge 0\) for all \(n\).
(b) Show that \(f(n) \ll \log\log n\) for \(n \ge 3\).
(c) Show that \(f(n) \sim \frac{1}{4}\log\log n\) if \(n = \prod_{y \lt p \le y^2}p\).
(d) Show that \(f(n) \le\left( \frac{1}{4} + o(1)\right)\log\log n\) as \(n\to \infty\).
Solution: (a) By Exercise 2.1.16(a), \[f(n) = -\sum_{d|n} \frac{\mu(d)\log d}{d} = \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1} \ge 0.\]
(b) Note that \begin{align*} f(n) \le \sum_{p \mid n} \frac{\log p}{p - 1}. \end{align*} Since \({\log x}/{(x - 1)}\) is decreasing function for all \(x\gt 0\), it is enough to show only when \(n = \prod_{p \le y}p\). Now, \begin{align*} \sum_{p \mid n} \frac{\log p}{p - 1} &= \sum_{p \le y} \frac{\log p}{p-1}\\ &\ll \log y = \log \log n. \end{align*}
(c) \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{1}{2} + o(1)\right) \left(\log y + O(1) \right)\\ &= \left(\frac{1}{4} + o(1)\right)\log\log n \end{align*}
(d) Suppose \(n = \prod_{y^{a} \lt p \le y^2}p\), then \begin{align*} f(n) &= \frac{\varphi(n)}{n} \sum_{p \mid n} \frac{\log p}{p - 1}\\ &= \prod_{y^{a} \lt p \le y^2} \left(1-\frac{1}{p} \right) \sum_{y^{a} \lt p \le y^2} \frac{\log p}{p-1}\\ &= \left(\frac{\log y^{a}}{2\log y} + o(1)\right) \left(\log y^2 - \log y^{a} + O(1) \right)\\ &= \left(\frac{a}{2} + o(1)\right) \left((2-a)\log y+ O(1) \right)\\ &= \left(\frac{a(2-a)}{4} + o(1)\right)\log\log n\le\left( \frac{1}{4} + o(1)\right)\log\log n. \end{align*}
There is no comment yet!
Problem: Let \(d_k (n)\) be as in Exercise 2.1.18. Show that if \(k\) and \(\kappa\) are fixed, then \[\sum_{n\le x} d_k (n) ^{\kappa} \ll x (\log x) ^{k ^{\kappa}-1}.\] for \(x \ge 2\).
Solution: Since \[\sum_{p \le x}d_{k}(p)^{\kappa}\log p \ll x, \qquad \sum_{\substack{p^{m}\\m\ge 2}}\frac{d_{k}(p^{m})^{\kappa}m\log p}{p^{m}} \ll 1,\] by Corollary 2.15, \begin{align*} \sum_{n\le x} d_k (n) ^{\kappa} &\ll \frac{x}{\log x} \prod_{p \le x} \left(1 + \frac{d_k (p) ^{\kappa}}{p}+\frac{d_k (p^2) ^{\kappa}}{p^2}+\cdots \right)\\ &\ll x (\log x) ^{k ^{\kappa}-1}. \end{align*}
There is no comment yet!
Problem: Let \(f(n) = \prod_{p|n}(1+p^{-1/2})\).
(a) Show that there is a constant \(a\) such that if \(n\ge 3\), then \[f(n) \lt \exp (a(\log n)^{1/2}(\log \log n)^{-1}). \]
(b) Show that \(\sum_{n\le x}f(n) = cx + O(x^{1/2})\) where \(c = \prod_{p}(1+p^{-3/2})\).
Solution: (a) It is enough to show only when \(n = \prod_{p\le y} p\). Note that \(\log \log n = \log y + O(1)\) and \[\sum_{p\le y}p^{-1/2} = \int_{2-}^{y} u^{-1/2} d\pi(u) \ll y^{1/2}(\log y)^{-1}.\] Now, \begin{align*} \log f(n) &= \sum_{p\le y}\log(1+p^{-1/2})\\ &=\sum_{p\le y}p^{-1/2} + O \left(\sum_{p\le y}p^{-1}\right)\\ &\ll y^{1/2}(\log y)^{-1} = (\log n)^{1/2} (\log \log n)^{-1}. \end{align*}
(b) Note that \[f(n) = \sum_{d|n} \mu(d)^2 d^{-1/2}.\] Hence, \begin{align*} \sum_{n\le x}f(n) &= \sum_{n\le x}\sum_{d|n} \mu(d)^2 d^{-1/2}\\ &=x\sum_{d\le x}\mu(d)^2 d^{-3/2} + O\left(\sum_{d\le x} \mu(d)^2 d^{-1/2}\right)\\ &= x\sum_{d=1}^{\infty}\mu(d)^2 d^{-3/2} + \sum_{d \gt x}\mu(d)^2 d^{-3/2} + O(x^{1/2})\\ &= cx + O(x^{1/2}). \end{align*}
There is no comment yet!